Tuesday, May 28, 2013

1305.6190 (Richard Jozsa et al.)

Classical simulation complexity of extended Clifford circuits    [PDF]

Richard Jozsa, Maarten Van den Nest
Clifford gates are a winsome class of quantum operations combining mathematical elegance with physical significance. The Gottesman-Knill theorem asserts that Clifford computations can be classically efficiently simulated but this is true only in a suitably restricted setting. Here we consider Clifford computations with a variety of additional ingredients: (a) strong vs. weak simulation, (b) inputs being computational basis states vs. general product states, (c) adaptive vs. non-adaptive choices of gates for circuits involving intermediate measurements, (d) single line outputs vs. multi-line outputs. We consider the classical simulation complexity of all combinations of these ingredients and show that many are not classically efficiently simulatable (subject to common complexity assumptions such as P not equal to NP). Our results reveal a surprising proximity of classical to quantum computing power viz. a class of classically simulatable quantum circuits which yields universal quantum computation if extended by a purely classical additional ingredient that does not extend the class of quantum processes occurring.
View original: http://arxiv.org/abs/1305.6190

No comments:

Post a Comment