Tuesday, May 28, 2013

1305.6082 (Alexandre Cooper et al.)

Time-resolved magnetic sensing with electronic spins in diamond    [PDF]

Alexandre Cooper, Easwar Magesan, Honam Yum, Paola Cappellaro
Quantum probes enable the sensitive detection of time-varying fields with high spatial resolution, opening the possibility to explore biological functions as well as materials and physical phenomena at the nanometer scale. In particular, nitrogen-vacancy (NV) centers in diamond have recently emerged as promising sensors of magnetic and electric fields. Although coherent control techniques have measured the amplitude of constant or oscillating fields, these techniques are unable to measure time-varying fields with unknown dynamics. Here we introduce a coherent acquisition method to accurately reconstruct the arbitrary profile of time-varying fields using coherent control sequences associated with the Walsh functions. These sequences act as digital filters that efficiently extract information about the dynamics of the field while suppressing decoherence. We experimentally demonstrate the Walsh reconstruction method by performing proof-of-principle reconstruction of the magnetic field radiated by a physical model of a neuron using a single electronic spin in diamond. These results will be useful for performing time-resolved magnetic sensing with quantum probes in a broad array of physical and biological systems at the nanometer scale.
View original: http://arxiv.org/abs/1305.6082

No comments:

Post a Comment