Wednesday, April 3, 2013

1304.0497 (Renato Fedele et al.)

Wave theories of non-laminar charged particle beams: from quantum to
thermal regime
   [PDF]

Renato Fedele, Fatema Tanjia, Dusan Jovanovic, Sergio De Nicola, Concetta Ronsivalle
The standard classical description of non-laminar charge particle beams in paraxial approximation is extended to the context of two wave theories. The first theory is the so-called Thermal Wave Model (TWM) that interprets the paraxial thermal spreading of the beam particles as the analog of the quantum diffraction. The other theory, hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of the single beam particle (uncertainty principle and spin) and provides the collective description of the beam transport in the presence of the quantum paraxial diffraction. QWM can be applied to beams that are sufficiently cold to allow the particles to manifest their individual quantum nature but sufficiently warm to make overlapping-less the single-particle wave functions. In both theories, the propagation of the beam transport in plasmas or in vacuo is provided by fully similar set of nonlinear and nonlocal governing equations, where in the case of TWM the Compton wavelength (fundamental emittance) is replaced by the beam thermal emittance. In both models, the beam transport in the presence of the self-fields (space charge and inductive effects) is governed by a suitable nonlinear nonlocal 2D Schroedinger equation that is used to obtain the envelope beam equation in quantum and quantum-like regimes, respectively. An envelope equation is derived for both TWM and QWM regimes. In TWM we recover the well known Sacherer equation whilst, in QWM we obtain the evolution equation of the single-particle spot size, i.e., single quantum ray spot in the transverse plane (Compton regime). We show that such a quantum evolution equation contains the same information carried out by an evolution equation for the beam spot size (description of the beam as a whole). This is done by defining the lowest QWM state reachable by a system of overlapping-less Fermions.
View original: http://arxiv.org/abs/1304.0497

No comments:

Post a Comment