Wednesday, February 13, 2013

1302.2859 (L. H. Ford et al.)

Negative Energy Seen By Accelerated Observers    [PDF]

L. H. Ford, Thomas A. Roman
The sampled negative energy density seen by inertial observers, in arbitrary quantum states is limited by quantum inequalities, which take the form of an inverse relation between the magnitude and duration of the negative energy. The quantum inequalities severely limit the utilization of negative energy to produce gross macroscopic effects, such as violations of the second law of thermodynamics. The restrictions on the sampled energy density along the worldlines of accelerated observers are much weaker than for inertial observers. Here we will illustrate this with several explicit examples. We consider the worldline of a particle undergoing sinusoidal motion in space in the presence of a single mode squeezed vacuum state of the electromagnetic field. We show that it is possible for the integrated energy density along such a worldline to become arbitrarily negative at a constant average rate. Thus the averaged weak energy condition is violated in these examples.This can be the case even when the particle moves at non-relativistic speeds. We use the Raychaudhuri equation to show that there can be net defocussing of a congruence of these accelerated worldlines. This defocussing is an operational signature of the negative integrated energy density. These results in no way invalidate nor undermine either the validity or utility of the quantum inequalities for inertial observers. In particular, they do not change previous constraints on the production of macroscopic effects with negative energy, e.g., the maintenance of traversable wormholes.
View original: http://arxiv.org/abs/1302.2859

No comments:

Post a Comment